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Abstract: Although past increases in emissions and atmospheric deposition of reactive nitrogen (Nr)
provided the impetus for extensive research investigating the effects of excess N in terrestrial and
aquatic ecosystems, the Clean Air Act and associated rules have led to decreases in emissions and
deposition of oxidized N, especially in the eastern U.S., but also in other regions of the world. Thus,
research in the near future must address the mechanisms and processes of recovery for impacted
forests as they experience chronically less N in atmospheric depositions. Recently, a hysteretic model
was proposed to predict this recovery. By definition, hysteresis is any phenomenon in which the
state of a property depends on its history and lags behind changes in the effect causing it. Long-term
whole-watershed additions of N at the Fernow Experimental Forest allow for tests of the ascending
limb of the hysteretic model and provide an opportunity to assess the projected changes following
cessation of these additions. A review of 10 studies published in the peer-reviewed literature indicate
there was a lag time of 3–6 years before responses to N treatments became apparent. Consistent
with the model, I predict significant lag times for recovery of this temperate hardwood ecosystem
following decreases in N deposition.

Keywords: decreased N deposition; forest recovery; hysteresis; temperate hardwood forests; Fernow
Experimental Forest

1. Introduction

Historic increases in atmospheric deposition of reactive nitrogen (Nr, primarily NH4
+

and NO3
−, but including numerous other reactive species [1]), and modeled projections

for future increases on a global scale, have led to a proliferation of studies on the effects of
excess N on aquatic and terrestrial ecosystems over the past several decades. Galloway
et al. [2] estimated that the total global atmospheric deposition of NH4

+ and NO3
- in

terrestrial ecosystems increased from 17 Tg N yr−1 in 1860 to 64 Tg N yr−1 in the early 1990s.
They also projected further increases to 125 Tg N yr−1 by 2050, a >7-fold increase during
this time period. Bobbink et al. [3] predicted similar increases in N deposition by 2030.
Although most terrestrial ecosystems studied were initially herb- and grass-dominated [4,5],
recent decades have witnessed an expansion of studies in forest ecosystems [6–13]. Seminal
papers on then-new perspectives of N biogeochemistry, e.g., [14–16], changed our views of
N in forest ecosystems from a predominantly growth-limiting nutrient to one whose excess
could threaten the structure and function of forests, including net primary productivity
and biodiversity, a phenomenon called N saturation [17].

Understanding the general responses of temperate forests to changes in N biogeochem-
istry is of particular importance because of their (1) global distribution (Figure 1), (2) high
biodiversity, and (3) close proximity to high densities of human populations [18]. Early
predictions for temperate forests in response to increasing N deposition included increased
nitrification leading to leaching of NO3

− and the associated loss of nutrient cations (Ca2+,
Mg2+, K+) [16,17]. Although most of these predictions were initially—and continue to
be—tested and refined via field N manipulation studies, e.g., [19], enhanced NO3

− and
cation leaching was also observed on the long-term untreated reference watershed (WS4)
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at Fernow Experimental Forest (FEF), West Virginia, based on stream chemistry data from
1969 to 1990 [20]. Peterjohn et al. [20] further identified seven symptoms of N saturation
at FEF, including high relative rates of net nitrification, relatively high concentrations of
NO3

− in soil solution, low seasonal variability in stream NO3
− concentrations, high loss

of NO3
− from an aggrading forest, a rapid increase in NO3

− loss following fertilization
from an aggrading forest, and low retention of inorganic N compared to other forested
sites. They concluded that untreated watersheds at FEF were perhaps the best example of
a temperate forest that had undergone N saturation via ambient deposition of N.
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Figure 1. The distribution of temperate forests. Reprinted with permission from ref. [18]. Copyright
2016 Gilliam.

Other research in temperate forests has examined the effects of excess N on plant
biodiversity, microbial communities, and forest health. In general, chronic increases in N
inputs have decreased the diversity of the herbaceous layer [3,11,21], altered the structure
and composition of soil microbial communities [22], and the threatened the growth and
vitality of some temperate forests [23]. How these ecosystem properties will respond in the
future, however, remains an open, and important, question.

The Clean Air Act (CAA) of 1970 in the U.S. and similar environmental regulations
worldwide have been exemplars of environmental legislation, leading to global-scale
improvements in many facets of environmental health, including lower human mortality
rates in the U.S. [24]. Initially targeting anthropogenic emissions of sulfur, subsequent rules
addressed emissions of N, leading to reductions of >50% from vehicles and power plants
in the U.S. [25]. On the other hand, the focus of the CAA has been on N oxides, rather
than reduced forms of N, such that temporal trends of N deposition vary between oxidized
versus reduced N (Figure 2). Thus, although total deposition of NO3

− peaked in the
mid-1990s and is currently declining throughout most of the U.S. [25,26], total deposition
of NH4

+ has either increased of remained stable [27,28].
This recent trend in atmospheric deposition of N, at least for NO3

−, challenges some
of the earlier models predicting future increases in N deposition, e.g., [2,3], and alters the
way N biogeochemists must think about N-impacted ecosystems in the future. Recent
papers have hypothesized several future scenarios for changes in terrestrial ecosystems
in response to reduced levels of atmospheric N input [29–33]. Gilliam et al. [28] proposed
a hysteretic model to predict future changes in forests of eastern North America, given
current patterns of declines in atmospheric deposition of N (Figure 3). Hysteresis is a
phenomenon in which the state of a property depends on its history and lags behind
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changes in the effect causing it. Thus, it is a system property wherein output is not a strict
function of corresponding input, resulting in a response to decreasing inputs that exhibits
a different trajectory than the response to increasing inputs.
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With this in mind, the curvilinear nature of the hysteretic model when applied to
important ecosystem responses at FEF (e.g., plant diversity and soil nutrient availability)
suggests that initial effects may have been buffered and slow to occur after experimental
increases in N deposition. Following declines in atmospheric N inputs, the hysteretic
model predicts varying lag times in the recovery of virtually all components of temperate
forest ecosystems, including soil nutrients and microbial communities, plant biodiversity,
and surface water chemistry toward conditions prior to N saturation as deposition of N
continues to decline.

The purpose of this paper is to use results from a long-term experiment at FEF to assess
the hysteretic model of ecosystem response for a forest during a time of elevated N inputs,
and to consider its implications for the recovery of forest ecosystem processes during a
period of declining N inputs. First, I describe FEF as a study site, along with a general
overview of field design and sampling associated with numerous investigations over the
past three decades on the effects of whole-watershed additions of N. Next, I summarize the
findings of those studies in the context of the hysteretic model. Finally, I describe future
directions for work at FEF and elsewhere as N biogeochemists address this relatively new
paradigm of decreasing N deposition, especially in the context of climate change.

2. Research at Fernow Experimental Forest
2.1. Background

Forest ecological research at FEF has a long, productive history [34], with many efforts
initially focused on silvicultural practices [35]. The collection of hydrochemical data for the
long-term reference watershed (WS4) began in 1951. Investigations into the effects of acid
deposition were initiated via the Fernow Watershed Acidification Study (WAS), beginning
as a now-terminated pilot study in 1987 on a watershed adjacent to FEF. The study was
established on FEF watersheds in 1989 and remains on-going. A notable characteristic of
the WAS is that it employs a whole-watershed application of simulated acid deposition via
three aerial additions of (NH4)2SO4 per year as a solid powder by fixed- and variable-wing
aircraft, representing a total N addition of 35 kg N ha−1 yr−1, and it was one of few studies
utilizing watershed-scale simulations of atmospheric deposition. After three decades,
the (NH4)2SO4 additions were discontinued in 2019, creating the unique opportunity to
examine experimentally the recovery of a temperate hardwood forest ecosystem following
a significant decrease in N inputs [34].

2.2. Site Description

FEF comprises approximately 1900 ha of the Allegheny Mountain section of the
unglaciated Allegheny Plateau near Parsons, West Virginia (39◦03′16′′ N, 79◦41′0′′ W).
Mean annual precipitation is approximately 1430 mm yr−1. Concentrations of acid ions in
wet deposition (i.e., H+, SO4

=, and NO3
−) were once among the highest in North America.

Soils of the experimental watersheds are coarse-textured Inceptisols (loamy-skeletal, mixed
mesic Typic Dystrochrept) of the Berks and Calvin series sandy loams largely derived from
sandstone [34].

Forest stands of FEF watersheds are composed of mixed hardwood species generally
varying with age. Young watersheds support early-successional species, such as black
birch (Betula lenta L.), black cherry (Prunus serotina Ehrh.), and yellow-poplar (Liriodendron
tulipifera L.), whereas older watersheds support late-successional species, such as sugar
maple (Acer saccharum Marshall) and northern red oak (Q. rubra L.) [34]. Herbaceous
layer communities initially exhibited less age-related variation, and included wood-nettle
(Laportea canadensis (L.) Wedd.), violets (Viola spp.), and several ferns [36].
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2.3. Field Design

Although FEF has numerous experimental watersheds that have been, and continue
to be, studied in a variety of contexts, the WAS focused on three watersheds (Figure 4).
WS4 supports >100 yr-old even-aged stands and has served as the long-time reference
watershed at FEF, whereas WS7 supports >40 yr-old even-age stands, and both are used as
untreated watersheds of contrasting stand ages. WS3 supports an approximately 40 yr-old
even-age stand and serves as the treatment watershed, receiving three aerial applications
of (NH4)2SO4 yr−1, beginning in 1989 and extending to 2019. March (or sometimes April)
and November applications were approximately 7.1 kg N ha−1; July applications were
approximately 21.2 kg N ha−1 [34].
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the long-term reference watershed, WS3 is the treated watershed as part of the Watershed Acidifica-
tion Study, and WS7 is an additional reference watershed of stand age similar to that of WS3.

2.4. Findings

A notable number of investigations have been carried out within the design of the
WAS, including several Master’s theses and Ph.D. dissertations from multiple institutions,
such as Marshall University, the Pennsylvania State University, the University of Pittsburgh,
and West Virginia University. To date, these have resulted in ~130 publications, mostly
articles in the peer-reviewed ecological literature, but also books, e.g., [34,37,38], symposia
proceedings, book and proceedings chapters, and USDA Forest Service research publications.
To assess the findings of the WAS in the context of the hysteretic model, I have summarized
10 studies from among these publications using three main criteria. First, each must
have been published in the peer-reviewed literature, thus excluding books, proceedings,
chapters, and USDA Forest Service publications. Second, each must represent a specific
study with a particular sampling within WAS watersheds, thus excluding review articles
(with the exception of Peterjohn et al. [20], a historically important synthesis placing WAS
watersheds in the context of N saturation). A good example of an excluded peer-reviewed
paper would be Gilliam [21], which used extensive results from the WAS, but did so only
in the context of general responses of forest herb communities to excess N deposition,
including studies from throughout Europe and North America. Third, studies should
represent largely continuous measurements of variables (e.g., herb communities, soil
fertility, stream chemistry) over time.
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These studies are summarized in Table 1 and placed in order according to the cu-
mulative number of years that (NH4)2SO4 had been added to WS3 when the study was
conducted. Since several studies used multiple sampling periods (e.g., stream chemistry),
the number of years listed represents the latest sampling included in the paper. Although
many, perhaps most, studies were multifaceted in their scope, for brevity only the main
focus and findings are summarized. All told, these studies comprise a sample period that
extends from three years [39] to 30 years of treatment [12].

Table 1. A brief summary of 10 studies published in the peer-reviewed literature. Yr indicates the number of years of
treatment on WS3 represented by latest year of sampling of a given study. Many studies were multi-focused with multiple
findings. For brevity, only the principle areas of focus and findings are summarized herein.

Study Yr Focus Findings

Gilliam et al. (1994) [39] 3 herb layer/soil nutrients no significant differences between WS3, WS4, and WS7
Gilliam et al. (1996) [40] 4 N mineralization, foliar nutrients no differences for N mineralization

Peterjohn et al. (1996) [20] 4 symptoms of N saturation clear evidence of N saturation on untreated WS4
Gilliam et al. (2006) [36] 5 herb layer communities no differences in composition and diversity

Edwards et al. (2002) [41] 8 soil solution chemistry higher NO3
− and cation concentrations on WS3

Edwards et al. (2002) [42] 8 stream chemistry increases in NO3
−, cations, and acidity, following ~2 yr lag

Gilliam et al. (2016) [11] 25 herb layer composition/diversity N alters herb layer composition, decreases species diversity
Gilliam et al. (2018) [43] 25 soil N mineralization/nitrification no watershed differences, increased homogeneity on WS3
Gilliam et al. (2020) [44] 25 soil fertility significant decreases in base cations and soil pH

Eastman et al. (2021) [12] 30 long-term carbon and N budgets added N leads to greater C storage in vegetation and soil

The timeline generated by these summarized results generally follows the trajectory
depicted in the hysteretic model (Figure 3). Early on, most studies reported minimal effects
of added N to WS3. After 3 yr of treatment, there were no treatment-related differences in
either soil or herb foliar nutrients [39], but 25 yr of treatment yielded numerous effects [44].
Following even as many as five years of treatment, Gilliam et al. [36] reported no signif-
icant differences between WS3 and WS4 in species composition and diversity in forest
herb communities, yet 25 yr of treatment greatly altered composition and decreased diver-
sity [11]. By 8–10 years of treatment, Edwards et al. [41,42] reported higher concentrations
of NO3

− and base cations in both streamflow and soil solution, but also demonstrated a
time lag of 2–3 years before responses became apparent, also consistent with the model
and confirmed more recently by Gilliam et al. [44]. Essentially all studies after this period
reported significant treatment effects on WS3.

It should be noted that many studies within the WAS were not carried out in ways
that allow direct assessment with the hysteretic model. On the other hand, the complete
body of published work merits summarization of the effects of excess N at FEF.

Following a lag period of 3–5 years, excess N elicited several responses in a temperate
hardwood forest ecosystem. It decreased rates of decomposition of organic matter [45],
likely through the alteration of microbial communities and extracellular enzymes [46].
Excess N increased NO3

− mobility, accompanied by the leaching of base cations [41,42] and
leading to decreases in soil fertility [44], increased Al mobility [47], increased NO and NO2
emissions [48,49], and limitation by P [50]. Several of these responses are also evidenced
in both tree and herb tissues [19,51]. Although there was an initial effect of fertilizer
added on tree growth, decreased soil fertility has led to slower growth of prominent tree
species [52–54]. There was, however, a high degree of interspecific variability in such a
response. Despite slower tree growth, excess N has led to greater storage of C in soil
and vegetation [12]. Finally, there has been a pronounced shift in herb layer composition
that arose from increases in a nitrophilic species, blackberry (Rubus allegheniensis Porter)
(hereafter, Rubus) [55], that competitively eliminated numerous N-efficient herbaceous
species, resulting in a loss of plant diversity [11]. The observed increase in cover of Rubus
at FEF in response to increasing deposition of N, as both a function of time and N loading,
is consistent with the ascending limb of the hysteretic model (Figure 5).
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Figure 5. Changes in cover of Rubus allegheniensis in response to a quarter century of N additions at
Fernow Experimental Forest, West Virginia. Data taken from Gilliam et al. [11].

3. Response of Terrestrial Ecosystems to Decreased N Deposition

Relative to temporal patterns of increases in Nr on a global scale, decreased N depo-
sition is a somewhat novel phenomenon. As a result, few studies have directly assessed
how terrestrial ecosystems respond to such decreases. Using whole-watershed additions of
(NH4)2SO4 (same as the WAS at FEF) from 1989 to 2016 at Bear Brook Watershed in Maine,
Patel et al. [13] found relatively rapid recovery (within one year) of stream NO3

− outputs
following cessation of treatment. They concluded, however, that the pattern for base cation
loss distinctly followed the predictions of the hysteretic model [13].

Earlier studies on potential recovery for forest herb communities following decreased
N deposition were all carried out in Europe, including the NITREX roof experiments [56]
and forest fertilization studies, e.g., [57]. In the 1990s, NITREX comprised a network
of sites throughout Europe that, among several integrated investigations, used roofs
to experimentally decrease high ambient N deposition. They found that nitrophilous
plant species, all of which had increased under high N deposition, declined over a 5-yr
period in plots under the roofs, suggesting a relatively rapid recovery [56]. By contrast,
Strengbom et al. [57] addressed what they called ‘legacy effects’ of excess N in forests of
northern Sweden by examining forest herbs 9 yr after cessation of 20 yr of N fertilization.
They found that N-mediated declines in ericaceous species and increases in a nitrophilous
grass, wavy hairgrass—Deschampsia flexuosa [(L.) Trin.]—persisted after this period of
nearly a decade, concluding that the effects of excess N can be long-lived for forest herbs.
As with biogeochemical responses, these sharply contrasting results highlight both the
research challenges and opportunities for the temperate forest sites in the eastern U.S.

Stevens [31] reviewed evidence from long-term experiments in grasslands, forests,
heathlands, and wetlands experiencing lower N inputs, primarily from cessation of experi-
mental additions of N. She concluded that plant species composition and soil microbial
communities may be slow in recovery, whereas soil N dynamics may respond more rapidly.
Based primarily on long-term research at Hubbard Brook Experimental Forest, New Hamp-
shire, USA, Groffman et al. [32] observed declines in the atmospheric deposition of N
over a half century from 1964–2014 and referred to ecosystem responses to this as N olig-
otrophication. They suggested that this phenomenon is driven via increased C flux from
the atmosphere to soils in ways that stimulate microbial immobilization of N, decreasing
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the plant’s available N pool, a response further exacerbated by climate change, including
lengthening of the growing season. Similar to patterns reported for North America [26],
Schmitz et al. [33] reported declines in N deposition throughout Europe since the 1990s.
They reviewed both observational (generally using deposition gradients) and experimental
studies for changes in soil acidification and eutrophication, understory vegetation, tree
foliar nutrients, and tree growth and vitality. In contrast to trajectories for the U.S., they
predicted that further declines in N deposition will be minimal, but also affirmed the
hysteretic model for forests of Europe.

4. Future Directions

With the cessation of whole-watershed additions of (NH4)2SO4 at FEF in 2019 follow-
ing 30 years of continuous treatment, the WAS at FEF is uniquely positioned to provide
empirical documentation of the recovery of a temperate hardwood forest following de-
creases in N deposition. Some of these investigations are already in place and are currently
of a monitoring nature. Plots to assess the response of the forest herb layer community
were established in 1991 and were sampled at various time intervals until 2009, after which
they have been sampled annually in early July [11]. Beginning in 1993, in situ incubations
of mineral soil were made monthly during the growing seasons of several years until
2007, after which they have received monthly growing season sampling every year [43].
In addition, personnel of the Timber and Watershed Laboratory, Parsons, West Virginia—
which manages the FEF—take weekly grab samples of stream water at calibrated weirs
for complete chemical analysis. As previously suggested, temporal patterns of stream
chemistry for treatment WS3 are consistent with the ascending curve of the hysteretic
model, exhibiting a lag time for the response of pH, NO3

−, and SO4
= of ~3 yr (Figure 6).

The extension of all such investigations will provide a continuous timeline for potential
changes under conditions of decreased N deposition.
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It is indeed likely that the temporal patterns of recovery will be as varied and non-
linear as the responses to 30 years of treatment. It is reasonable to hypothesize that
most ecosystem processes will display lag times as predicted by the hysteretic model
(Figure 3), but that the length of this period will vary considerably among processes.
Once again, Patel et al. [13] reported an immediate decline in stream NO3

− output at
Bear Brook Watershed, Maine, following cessation of whole-watershed additions identical
to those at FEF. Base cations, however, exhibited the hysteretic pattern. It is likely that
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the NO3
− response at FEF will be less immediate than in Maine because of the higher

conifer component of stands at Bear Brook Watershed, Maine [58], especially at higher
elevations [13].

Of particular interest will be the response of forest herb communities on WS3. Once
again, other studies have exhibited conflicting results. A reasonable hypothesis for FEF
in particular is that there will be a very pronounced lag time in the response of herb
community composition and diversity. The major change in response to N additions on
WS3 has been the increased dominance of a single nitrophilous species that was once only
a minor component—Rubus (Figure 5). Among the many effects this increase has had
on the biotic and abiotic environment of the forest understory is that it is has effectively
redistributed high, possibly phytotoxic, levels of Mn from deep soil to surface horizons [50].
Because Rubus accumulates Mn in pre-senescent leaves and further concentrates Mn in
post-senescent leaves [59], this effect may persistent for several years.

Finally, regarding future directions, perhaps the greatest challenge is the ‘moving
target’ represented by climate change. Consider that total inorganic deposition in the U.S.
declined by nearly 25% from a maximum in 1995 to 2012, at which time it equaled the
deposition in 1985 [26]. Mean annual temperature in the U.S., however, was 10.7 C in 1985,
increasing to 13.2 C in 2012. More importantly, CO2 concentrations for those two years in
the Northern Hemisphere were 346 and 395 ppm, respectively, an increase of >1% over that
30-yr period. Accordingly, whereas it is certain that N deposition will decline to previous
levels, it is equally certain that ambient temperature and CO2 will not.

5. Conclusions

In conclusion, the Clean Air Act in the U.S. and similar environmental regulations
worldwide have exhibited a high degree of efficacy with respect to decreasing emissions
of pollutants, including and especially Nr. As a result, atmospheric deposition of N
has declined over the past few decades on a global scale, including North America [59],
Europe [33], and China [60], representing a challenge to the way N biogeochemists have
thought and carried out research over this period of time. Moving forward, such challenges
lead to new research opportunities and directions.

The hysteretic model proposed by Gilliam et al. (2019) has received support in the
literature in predicting a non-linear response of forest ecosystems to declines in atmospheric
deposition of Nr, coupled with time lags of varying duration, depending on specific
conditions for a particular site [13,61,62]. Studies over the past three decades at the Fernow
Experimental Forest, West Virginia, generally support the ascending limb of the hysteretic
model during which time aerial applications were added to an entire watershed. Cessation
of this treatment in 2019 now allows for further empirical testing of the model via ongoing
studies of several components of this hardwood forest ecosystem, including biogeochemical
cycling and dynamics of the forest herbaceous layer.
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